Gamma & Beta functions

Gamma function

definition:

Γ(x)=0et tx1 dt   (x>0) Γ(1)=1Γ(0.5)=π Γ(n+1)=n Γ(n)=(n)! Γ(α,β)=f(λ)=λα1eβλ

Beta function

definition:

B(x, y) = \int _0 { #1} t^{x-1} (1-t) ^{y-1} dt \ \ \ (x>0, y>0) p(t|x,y)=beta(t|x,y)=tx1(1t)y1/B(x,y)

where B(x, y) is a beta function as the normalizer.

B(α,β)=Γ(α)Γ(β)Γ(α+β)